
Application Validation on RTDroid

Yin Yan
University at Buffalo, State University of New York

yinyan@buffalo.edu

Lukasz Ziarek
University at Buffalo, State University of New York

lziarek@buffalo.edu

ABSTRACT

Android is becoming used more frequently in domains that expect
some real-time guarantees. To facilitate the adoption of Android
for programming real-time systems, this work presents a first effort
to apply real-time scheduling theories to a real-time extension on
Android, RTDroid.We integrate real-time properties specified in RT-
Droid’s application manifest with an existing real-time scheduling
framework, Cheddar. We leverage Cheddar to perform schedulabil-
ity analysis and feasibility tests, based on the properties of RTDroid
application components specified in the application manifest. This
paper details our integration process and reports our experience of
validating real-time properties in a real-time application developed
on RTDroid.

CCS CONCEPTS

• Software and its engineering → Real-time schedulability;
Real-time systems software; Empirical software validation;

KEYWORDS

real-time, application validation, schedulability analysis

ACM Reference Format:

Yin Yan and Lukasz Ziarek. 2017. Application Validation on RTDroid. In Pro-
ceedings of ESWeek Workshop on Declarative Embedded and Cyber-Physical
Systems (DECPS’17). ACM, New York, NY, USA, 8 pages. https://doi.org/10.
475/123_4

1 INTRODUCTION

Mobile devices have evolved far beyond the stereotypical smart-
phone or tablet and are now being employed in traditional real-time
embedded contexts. As one of the most popular mobile systems,
Android has seen the most widespread deployment outside of the
consumer electronics market. Its open source nature has prompted
the ubiquitous adoption of Android in sensing, medical, command
and control, robotics, and automotive applications [3–6]. For exam-
ple, NASA’s PhoneSat project [43] uses Android-equipped device
as a low cost profile for a satellite control unit. The medical in-
dustry has envisioned Android as a potential end-user device for
remote patient monitoring. Example applications include cardio

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DECPS’17, October 19, 2017, Seoul, South Korea
© 2017 Copyright held by the owner/author(s).

monitors, glucose analyzers, patient fall detectors [1, 7, 15, 16, 22].
In academia, a number of sensing applications have been proposed
and developed, including seismic sensing, acoustic processing, lo-
calization and etc [8, 17, 36].

The benefits of using Android in these scenarios are four fold: (1)
Android provides a rich set of APIs and supports various connec-
tivities through Wi-Fi, Bluetooth, 3G, and 4G; (2) It provides native
support for a large set of sensors, including GPS, accelerometer,
camera, and gyroscope; (3) It fosters an intuitive user interface de-
sign through a touch screen and gestures. Control and medical apps
typically require these functionalities and their development can
be streamlined as well as standardized through the Android APIs
and libraries. (4) Android’s play store offers countless applications
that are useful for real-time applications, such activity detection,
environmental sensing, network-adaptive data transfer, etc. The
reuse of these existing functionalities on Android is one of the most
appealing, and also challenging. factors to adapt Android for real-
time as well. Unfortunately, since Android is originally designed as
a mobile system, it is not surprising that Android does not provide
any real-time guarantees.

Our previous work on RTDroid [45, 47, 48] introduced a new
programming model that retained a familiar style of Android pro-
gramming by extending Android’s basic application components
and its application manifest schema with real-time capabilities.
RTDroid is built using a real-time capable JVM, Fiji VM [35], and
an existing RTOS, either RTEMS or RT Linux. RTDroid leverages
the runtime isolation features of the Fiji MultiVM [44, 49] for the
execution of multiple applications. It also supports sophisticated
sensing abilities with bounded sampling latency [46]. Although
RTDroid provides a familiar programming model for building real-
time applications on Android, currently it is up to the programmer
to validate that the configuration of the application as well as the
RTDroid components form which the application is constructed
meet real-time guarantees. This work explores the possibility of
adding a static validation mechanism to build process for RTDroid.
This mechanism validates the real-time configuration for tasks
initialization and shared resource allocation during an RTDroid’s
application bootstrap.

More specifically, this paper presents our first attempt to enables
an off-line validation mechanism for RTDroid’s applications. We
utilize real-time properties declared in RTDroid’s application mani-
fest for scheduling analysis and feasibility tests. RTDroid’s compiler
converts its application manifest to a format that understood by a
real-time scheduling framework, named Cheddar [39]. We leverage
Cheddar’s built-in scheduling simulation and feasibility tests to
validate whether an application is configured correctly to meet its
timing constraints in term of response times, execution rates and

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

DECPS’17, October 19, 2017, Seoul, South Korea Yin Yan and Lukasz Ziarek

 APIs for lifecycle
management Callback functions Component statuses

onCreate(…) destroyed

onReset(…)

onPause(…)

onResume(…)

pausedactiveonStart
Comand(…) onDestroy(…)initilized

start
Service(intent)

pause
Service(intent)

resume
Service(intent)

reset
Service(intent)

stop
Service(intent)

stop
Service(intent)

Figure 1: Lifecycle management of RTDroid’s Real-time Service

the number of missed deadlines. Such validation mechanism serves
two purposes: (1) It provides an automatic solution for application
developers to verify if the application configuration is valid. (2) It
provides a starting point for investigating a hybrid method for the
worst case execution time.

The rest of the paper is organized as follows, Section 2 pro-
vides an overview of the task model for our application validation
mechanism and discusses the compatibility between the RTDroid’s
components and existing real-time task models. Section 3 details
the application validation process with the respect of task sched-
uling and bound checks of shared buffers and introduce how to
enforce the memory bounds and buffer bounds during the boot
process on RTDroid. Section 4 then shows a case study that applies
the application validation process to a cochlear implant application
running on RTDroid and reports our integration experiences.

2 BACKGROUND

RTDroid’s programming model is derived from Android’s program-
ming model by extending Android’s application components and
the manifest schema. RTDroid inherits Android’s event-driven na-
ture and provides a familiar programing style to Android developers.
Both Android and RTDroid programming models rely heavily on
message passing based task communication, which significantly
complicates the task model for validation. This section first intro-
duces the design of the real-time components that form the bases
of RTDroid’s programming model. We then discuss how to model
these components in a real-time task model that allows task com-
munication.

2.1 Real-Time Components of RTDroid

RTDroid provides three basic application components—RealTimeService,
RealTimeReceiver and PeriodicTask. To facilitate application valida-
tion, RTDroid synthesizes communication components for different
types of message handling patterns. These are defines as RTDroid’s
real-time channels.

Similar to Android’s components, RTDroid’s real-time compo-
nents are defined as abstract classes with a set of callback functions,
these callback functions are used by developers to implement appli-
cations logic and invoked by lifecycle management APIs. Figure 1
depicts the lifecycle management of RealtimeService. Developers
must extend the abstract class of RealtimeService and implement
their application logic in callback functions. For example, onStart-
Command(), which will be triggered, when other components or
system services calls startService(Intent). Then, once the execu-
tion of onStartCommand() is completed, RealtimeService enters into
the state of “active”. The following paragraphs describe the design
of each component, respectively.

2.1.1 Real-time Service. The real-time service is a standalone
component that serves as a controller over a group of nested com-
ponents, such as real-time receivers and periodic tasks. Although
every component in the same group has its own real-time prop-
erties, all component in a same real-time service share the same
lifetime. This means that lifecycle management APIs listed in Fig-
ure 1 will start/stop/pause/resume both the real-time service as
well as all of its nested components.

2.1.2 Real-time Receiver. The real-time receiver is used to listen
to specific events from system services or even other applications.
It can be implemented as a standalone component or a nested
component of a real-time service. It has only two callback functions:
onReceive(), which is used to implement responses to events, and
onReset() to reset and clear data structures and memory associated
with the real-time receiver. The callback function, onReceive(), is
triggered by an broadcasting API—sendBroadcast(). The callback
function, onReset(), can not be invoked programmatically, it is only
invoked if the real-time receiver is reset by the RTDroid runtime
system.

2.1.3 Periodic Task. The periodic task can be only be imple-
mented as a nested component of a real-time service. The periodic
task component differs from other RTDroid components as it does
not have a corresponding component in Android. An instance of

Application Validation on RTDroid DECPS’17, October 19, 2017, Seoul, South Korea

Time

start-time

cost
period

deadline

T

T

T

T

Figure 2: Timing Constrains

mem-size

total

persistent

release

N

N

N

Figure 3: Memory Bounds

intent-filter
action

data

name

name
sizeA

typeA

A

A

Figure 4: Channel Access

Service

priority

periodic
task

0 … 1

meta-data

0 … ∞

N

nameA

Time

intent-filer

intent-filer

(a) Real-time Service

channel

queueing
order

processing
order

msg drop
policy

data

nameA

(b) Real-time Channel

Periodic
Task

Priority

Time

MemSize
(c) Periodic Task

Receiver

priority
mem-size

meta-data0 … ∞

intent-filter

N

nameA

(d) Real-time Receiver

Figure 5: Real-Time Schema for RTDroid’s Components

periodic task has the same lifetime as the real-time service that con-
tains it. PeriodicTask has only one interface, onRelease(), which
embeds the logic to execute when the periodic task is released by
the RTDroid scheduler.

2.1.4 Real-time Communication Channel. The real-time com-
munication channels are built-in communication mechanisms on
RTDroid. It is not an abstract class. To create a channel, a devel-
oper needs to declare the channel in the application manifest and
specify the size of message sent in the channel, messages process-
ing pattern and the maximum length of the message queue. If a
component sends/receives messages to/from the channel, the com-
ponent has to explicitly state itself as a producer/consumer of the
channel and provides messages sending/receiving rate. There are
four types of real-time channel built in RTDroid, we model them as
tasks precedence and shared buffers. More details about the channel
modeling will be illustrated as part of integration details Section 3.
This section just focus on the discussion of the task model.

2.2 Task Model for RTDroid’s Application
Validation

Our validation mechanism utilizes a task model that accepts peri-
odic tasks with hard deadlines as well as sporadic and aperiodic
tasks with soft deadlines. It is based on a fixed-priority, periodic
task model with rate monotonic scheduling. Feasibility tests are
defined by [21, 29]. A number of assumptions were made to simplify
the complexity of the feasibility tests. For example, every periodic
task (τi) has an offset from system startup for the first release of
the task and the length of time between successive releases must
be a constant (Ti). Each release of a task must have a hard deadline
(Di). Most of the time such deadline (Di) equals to Ti . Thereby, all
tasks are independent of others and no interaction is allowed.

To support aperiodic and sporadic tasks and to enable task in-
teractions, we adopt two extensions to the basic model: (1) The
inclusion of aperiodic and sporadic tasks with soft deadlines, which

DECPS’17, October 19, 2017, Seoul, South Korea Yin Yan and Lukasz Ziarek

defines the periodicity of a sporadic task as the maximal inter-
val of two release and utilizes an aperiodic server to repeatedly
check requests of aperiodic releases [9, 12, 14, 41]. (2) Introduction
of shared resources and task precedence in the feasibility analy-
sis [11, 18, 23, 42].

Notice that the minimal execution unit of RTDroid’s components
is the callback function, so one execution of a callback function is
referenced as a release of a real-time task in this work. PeriodicTask
is directly mapped to a real-time periodic task with hard deadlines.
If one release of a periodic task cannot be completed before the
next release, it means that the application is not schedulable. We
model real-time services and the real-time receivers as aperiodic
tasks and sporadic tasks with soft deadlines since their releases are
irregular. A real-time receiver is normally used to listening to an
specific system/application event that occurs repeatedly within a
minimum interval, so real-time receiver is modeled as the sporadic
task. The real-time service is used to grouping a set of nesting com-
ponents, it normally serves as a controller to manage the lifecycle
of its nesting components. There is no specific interval between
two releases, so we model real-time services as aperiodic tasks. The
present implementation of RTDroid uses a per-instance server to ex-
ecute RealtimeService or RealtimeReceiver, the server periodically
checks release requests and invokes callback functions.

3 APPLICATION VALIDATION AND
BOOTSTRAP

Section 2 has describe the task model in our validation process, this
section presents integration details between RTDroid’s real-time
properties declared in its application manifest and feasibility tests
in Cheddar [39]. Later, we also explain how the application boot
process leverages the output of the application validation for task
initialization and memory boundary enforcement.

3.1 Integration between RTDroid Manifest and
Cheddar

RTDroid’s compiler translates RTDroid’s application manifest to a
XML file understood by Cheddar [39] and performs the validation
process, including scheduling simulation, calculating worst-case
response times, and producing an upper bound of system utiliza-
tion. Because RTDroid only supports an environment with a single
core processor, all tests for this paper use uniprocessor hardware
simulation in Cheddar. We also check memory bounds for real-time
components and message bounds for real-time channels. These
checks, however, are implemented in RTDroid’s compiler and not
in Cheddar.

3.1.1 Timing Constraints in Scheduling Simulation. Timing con-
straints of real-time components are modeled into a task model with
fixed-priority scheduling consisting of three types of tasks: a peri-
odic tasks with hard deadlines, sporadic tasks with soft deadlines,
and aperiodic tasks with soft deadlines. Figure 5 shows a complete
manifest schema. Each component must be declared with a unique
name as its identifier; the importance of the component is defined
by a priority element. Timing constraints are specified with a

Tags Real-Time Tasks
Aperiodic

Task
Sporadic
Task

Periodic
Task

<start> - - The first
release time

<cost>
Soft

deadline
Soft

deadline

The
worst-cast
time cost

<periodic> - MISR1 Periodicity

<deadline> - - Hard
deadline2

1 The minimum interval between two successive releases.
2 The period of a periodic task is equal to its deadline.
Table 1: Real-Time Semantics of Timing Elements

<time> element consisting of four child elements, given as tim-
ing parameters: <start>, <cost>, <periodic> and <deadline>,
as shown in Figure 2.

In real-time semantics, due to the restrict levels with deadlines,
these timing parameters present slightly different meanings. e.g.,
the element of <cost> is used as a soft deadline for the aperiodic
and the sporadic task, but it is the worst-cast time cost of each
release for a periodic task. Notice that the worst-case time cost is
filled by application developers at the current version of RTDroid.
Similarly, The element of <periodic> is the minimum interval
between two successive releases for a sporadic task as listed in
Table 1.

3.1.2 Feasibility Tests and Bounds Checking. There are two feasi-
bility tests: (1) The schedulability test that produces an upper bound
of processor utilization and worst-case response times of tasks; (2)
The performance analysis with shared buffers/task precedences
which leverages the theory of queuing systems to calculate two
upper bounds—message waiting times and the maximum number
of messages in a given buffer, respectively.

The schedulability test is based on a fixed-priority, preemptive
rate monotonic scheduler in [21, 29]. The sporadic and aperi-
odic tasks are handled through a aperiodic server that periodically
checks requests of aperiodic/sporadic tasks. There are different
types serves proposed by Spuri et. al. [40, 42]. For performance
analysis with shared buffers and task precedences, Table 2 shows
the modeling of RTDroid’s channel against queuing system the-
ory [27, 28]. The message waiting times and the maximum number
of messages are computed during the performance analysis, the
later number is then used as the message bound of a real-time
channel to check if any of its producer/consumer sends/receives
message exceed this bound.

RTDroid utilizes on-stack memory management schema with
two types of memory scopes: <persistent> and <release>. All
real-time components must specify their expected memory usage
via the element of <mem−size> defined in Figure 3 with three at-
tributes:

Application Validation on RTDroid DECPS’17, October 19, 2017, Seoul, South Korea

Channel Name Channels in RTDroid Real-Time Entities

Message passing channel
Multiple producers. Consumers inherits the
priority of the message producer. A consumer
per priority.

A task precedence per priority.

Intent broadcasting channel

The broadcasting communication pattern with
fixed number of participants. All participants
declare their rates of message producing/con-
suming.

A shared buffer with M/M/s/∞/N.

Bulk data transfer channel One-to-one data communication.
A receiver as the consumer, a task precedence.
Periodic task as the consumer, shared buffer
with M/D/1.

Cross-context channel Unbound incoming messages, process
messages with best efforts. A shared buffer with M/G/1.

Table 2: Modeling between RTDroid’s Channel to Real-Time Entities

(1) Release: The memory region is used to allocate temporal
objects for the execution of callback functions, this region is
reclaimed after each invocation.

(2) Persistent: The memory region is used to allocate objects that
have the same lifetime as real-time components, this region
is reclaimed when the associated component is destroyed.

(3) Total: The sum of the persistent, the release, and the memory
usage of all children components if any exist.

Memory bound checking is performed at two levels. The first level
is to check every single component if the sum of its persistent, its
release, and its children’s releases is equal to its total. The next level
is to check the sum of total in all component is less than the amount
of memory available for the real-time application itself within the
RTDroid framework.

3.2 Application Bootstrap

The application bootstrap process is divided into two stages: a static
compile time and a runtime boot procedure as depicted in Figure 6.
The first step of static application compilation is to validate the
real-time configuration to quantify temporal constrains and check
any unbounded behavior over shared buffers defined in the appli-
cation manifest. Then, RTDroid’s compiler emits Java bytecode
that overrides the constructor of each component in which ap-
plication bootstrap instantiates an instance for declared real-time
components, which assign timing parameters and allocates memory
bounds or message objects for the runtime. Note, RTDroid does
not allow any real-time component to manually change its tim-
ing properties at runtime. This is enforced by the programming
model and exposed interfaces in RTDroid. The memory bound and
utilization checks are enforced via instrumented bounds checks,
inserted by the compiler, in the RTDroid runtime implementation. If
memory constraints are violated, a pre-allocated runtime exception
is generated by the runtime system.. For example, when the mem-
ory consumption of a real-time component exceeds its memory
bound, the runtime checks will throw an OutOfMemory exception.
This ensures clean failure semantics.

The bootstrap of a real-time application leverages results of static
validation and makes the application ready for computation. As
Figure 6 shows, after the JVM is initialized, it invokes an entrance
function of the application and loads generated bytecode. Then,
each component is allocated based on the real-time properties de-
fined in the manifest and registered with an internal component
manager for lifecycle management during the application runtime.
Memory regions and message objects are preserved to guarantee a
bounded response time with shared buffers and task precedences
as discussed above.

4 CASE STUDY: COCHLEAR IMPLANT
APPLICATION ON RTDROID

This section uses a simulated cochlear implant application as a case
study to reports our experiences of integrating RTDroid’s validation
mechanism with an existing real-time framework, Cheddar. The
cochlear implant can restore hearing abilities through a surgically
inserted electronic device in a patient’s inner ear. Figure 7 shows an
external device used for capturing ambient audio and converting
audio samples into digital signals, and an implanted device that
translates signals into electrical energy and triggers implanted
electrodes to simulate hearing nerves. Recently, there has been

Compile Time

Manifest XML
Parser

Configuration
Validation

Configuration
Bytecode

Generation

System Service
Initialization

Component
Initialization /
registration

Application
Execution

Configuration
Bytecode

Configuration
Object Initilization

Component
Manager

Figure 6: Bootstrap Procedure of RTDroid Application

DECPS’17, October 19, 2017, Seoul, South Korea Yin Yan and Lukasz Ziarek

interests in replacing the external device with a smartphone for
audio sampling and processing to reduce the number of devices the
patient must carry [2, 10] and enable the possibility of changing
the built-in signal processing algorithms for better performance.
To keep the patient rapidly response in daily conversation, a fixed
amount of audio samples (128 audio samples) must be processed on
the smartphone and delivered to the implanted device every 8ms.

Our previous work [47] implemented such cochlear implant
application with three independent components on RTDroid, as
listed in Table 3. It has two real-time services that control periodic
tasks for audio recording and processing, respectively. The record-
ing task sends captured audio samples to the processing task via
a message passing channel (modeled as a task precedence). Audio
samples are buffered and processed. After performing the signal
processing algorithm, the processing task broadcast its processing
signal to a real-time receiver (a sporadic task) as an output receiver.
The receiver performs error-checking by simulating the behavior of
implanted device. To enforce the timing constrain (8ms), we model
the recording task, the processing task and the output receiver
with descending priorities starting from 90 (the highest priority
allowed in RTDroid application), while limits their periods with
8ms and time cost with 1ms. The cost time is estimated through an
experimental measurement in [10], the time cost of computation
for sampling, processing and error checking mostly less than 1ms.

We have implemented the integration process as part of the pro-
cedure in RTDroid’s application compilation. The compiler trans-
lates RTDroid’s application manifest to an input XML file loaded
in Cheddar v3.31 There are a number of workaround that must
be token to utilized the scheduling simulation and feasibility tests.
According to our best knowledge, they are due to the fact of limita-
tions of Cheddar’s implementation, including the incompleteness of
task precedence and shared buffer with the scheduling simulation
and buffer feasibility tests. For example, the the simulation doesn’t

1Compiled from SVN repository revision 1835, last source code changed on 2015-08-19.

Figure 7: Cochlear Implant

Task Priority Start Cost Period
(Deadline)

Recording Service 90 0 1 8
Processing Service 89 0 1 8
Output Receiver 88 0 1 8
Table 3: Real-Time Properties in Cochlear Implant

run with the present of aperiodic tasks. The implementation of
message queuing models for shared buffers are not completed. We
have made the following workaround to get task simulation and
feasibility tests: (1) we manually convert the output receiver (a
sporadic tasks) triggered by task precedences to a periodic task
since it is triggered in every release by the processing service. (2)
The feasibility tests on shared buffer can only produce meaningful
results with P/P/1 model.

We report the scheduling simulation of the cochlear implant ap-
plication in Cheddar, as shows in Figure 8. As they are in a descend-
ing order and scheduled with the policy of POSIX_HIGHTEST_PRIORI-
TY_FIRST, the recording service is scheduled first, then processing
service and the output receiver at last within 80ms repeatedly.
Additionally, the scheduling feasibility test calculates processor
utilization at 37.5 % and WCRTs are 1ms, 2ms, 3ms with the
descending priorities. Given to the scheduling simulation, the mes-
sage size bound of the massage passing channel is always 1, the
maximum waiting time is 1 as well.

5 RELATEDWORK

The study of real-time scheduling started with the hard deadline
case in which any task with a missed deadline was considered to
be a failure [13, 21, 29]. To build a system that would guarantee
temporal constrains as well as logical behavior, it was necessary
to consider a worst-case formulation. Later, Gardner et. al. [19, 20]
model real-time constrains with soft deadlines. They are defined
with soft deadlines and a lateness constraint. For example, it defines
α(x) to be the long run fraction of jobs that miss their deadlines by
more than x time units, then lateness constraints are typically of
the form α(x) ≤ β .

Meanwhile, the real-time task model has also has been evolved
to include with more real-world aspects, such as blocking due to
synchronization, precedence constraints, mode changes, operating
system overhead and architectural details [11, 18, 23, 42, 42]. The
task model in our work requires a task model with the support
of these aspects. Unfortunately, according to our experiences, al-
though real-time scheduling theory has been most fully developed
to predict whether a set of tasks will meet their hard deadlines
given a certain set of assumption about the task set and system,
fewer analytic results are available for soft deadlines.

There are a number of projects that proposed different architec-
tures for a real-time capable Android paltform [30–32, 34, 37], but
most of them require a strict separation between real-time and non
real-time applications. Kang et al. [26] and Ruiz et al. [38] imple-
mented such separation in the standard Linux kernel, assigning one
or more cores for real-time tasks and isolating those cores from the
rest of the system. Kalkov et al. [24] proposed to explicitly trigger
the GC to reduce pause time during critical periods. The result was
reduced latency in the system, but hard guarantees were still not
possible to assure. RTDroid strives to make application interactions
safe and avoids to manually invoke the garbage collection as choos-
ing when to run the GC is difficult. Kalkov et al. also explored how
components interact through intents, providing a mechanism to
prioritize intents [25], but did not provide any memory bounds

Application Validation on RTDroid DECPS’17, October 19, 2017, Seoul, South Korea

Figure 8: Scheduling Simulation of Cochlear Implant Application in Cheddar

on communication. RTDroid provides static bounds on memory
consumption of communication between tasks, allows communi-
cation between real-time and non real-time tasks, and observers
that only prioritizing intents can induce priority inversion in the
callbacks that handle those intents. Other efforts have the left the
Android framework unmodified [33], instead focusing on exposing
the degree of jitter present in sensor data in the system so that
applications can make necessary adjustments. RTDroid aims to
eliminate such jitter.

6 CONCLUSION AND FUTUREWORK

In this paper we introduced our first automated mechanisms for
application validation in RTDroid. Since RTDroid constructs are
complex, internally constructed from potentially multiple compo-
nents, their translation to corresponding tasks in a real-time task
model is non trivial. We have shown a preliminary mapping of RT-
Droid constructs into a task model and provided a case study that
validate real-time properties in a cochlear implant application and
detailed our experiences as well as observed limitations in Cheddar.

Our next steps are overcoming the current limitations of our
translation of RTDroid constructs into Cheddar. We also aim to
explore typing mechanisms, specifically session types, to validate
communication properties of the system. Specifically we will be
exploring adding resource bound analysis to session types, to infer
limits on the number of active messages in an application. Such
information can be used to atomically infer the size of memory
regions and channel queues in the RTDroid runtime.

REFERENCES
[1] Android and RTOS Together: The Dynamic Fuo for Today’s

Medical Devices. http://embedded-computing.com/articles/
android-rtos-duo-todays-medical-devices/.

[2] Android-Based Research Platform for Cochlear Implants. http://goo.gl/EJuh1i.
[3] Android Based Robotics: Powerful, Flexible and Inexpensive Robots for Hobbyists,

Educators, Students and Researchers. http://www.socsci.uci.edu/~jkrichma/ABR/
abr_background.html.

[4] Float Sensor NetWork. http://float.berkeley.edu/.
[5] Robots and Androids—Tomorrow’s Robotics Today. http://www.

robots-and-androids.com/.
[6] SmartBot: your Smartphone robot. http://www.overdriverobotics.com/.
[7] Why Android Will Be The Biggest Selling Medical Devices in The World By The

End of 2012. http://goo.gl/G5UXq.

[8] Xing and collaborators travel to Ecuador to monitor the Tungurahua Volcano.
http://www.cse.msu.edu/About/Notable.php?Nid=423.

[9] T. F. Abdelzaher, V. Sharma, and C. Lu. A utilization bound for aperiodic tasks
and priority driven scheduling. IEEE Trans. Comput., 53(3):334–350, Mar. 2004.

[10] H. Ali, A. P. Lobo, and P. C. Loizou. Design and Evaluation of A Personal Digital
Assistant-Based Research Platform for Cochlear Implants. Biomedical Engineering,
IEEE Transactions on, 60(11):3060–3073, 2013.

[11] J. H. Anderson, S. Ramamurthy, and K. Jeffay. Real-time computing with lock-free
shared objects. In Proceedings of the 16th IEEE Real-Time Systems Symposium,
RTSS ’95, page 28, Washington, DC, USA, 1995. IEEE Computer Society.

[12] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-
time sporadic tasks on one processor. In Real-Time Systems Symposium, 1990.
Proceedings., 11th, pages 182–190. IEEE, 1990.

[13] I. Bate and A. Burns. Schedulability analysis of fixed priority real-time systems
with offsets. In Real-Time Systems, 1997. Proceedings., Ninth Euromicro Workshop
on, pages 153–160. IEEE, 1997.

[14] G. Bernat and A. Burns. New results on fixed priority aperiodic servers. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, RTSS ’99, pages 68–,
Washington, DC, USA, 1999. IEEE Computer Society.

[15] W. C. Blog. What OS Is Best for a Medical Device? http://www.summitdata.com/
blog/?p=68.

[16] cherylcoupe. Roving Reporter: Medical Device Manufacturers Improve Their
Bedside Manner with Android. http://goo.gl/d2JF3.

[17] M. Faulkner, M. Olson, R. Chandy, J. Krause, K. M. Chandy, and A. Krause. The
next big one: Detecting earthquakes and other rare events from community-
based sensors. In Information Processing in Sensor Networks (IPSN), 2011 10th
International Conference on, pages 13–24. IEEE, 2011.

[18] J. J. G. Garcia and M. G. Harbour. Optimized priority assignment for tasks
and messages in distributed hard real-time systems. In Proceedings of the 3rd
Workshop on Parallel and Distributed Real-Time Systems, WPDRTS ’95, pages
124–, Washington, DC, USA, 1995. IEEE Computer Society.

[19] M. K. Gardner. Probabilistic Analysis and Scheduling of Critical Soft Real-time
Systems. PhD thesis, Champaign, IL, USA, 1999. AAI9953022.

[20] M. K. Gardner and J. W.-S. Liu. Analyzing stochastic fixed-priority real-time
systems. In Proceedings of the 5th International Conference on Tools and Algorithms
for Construction and Analysis of Systems, TACAS ’99, pages 44–58, London, UK,
UK, 1999. Springer-Verlag.

[21] R. Ha and J. W. Liu. Validating timing constraints in multiprocessor and dis-
tributed real-time systems. In Distributed Computing Systems, 1994., Proceedings
of the 14th International Conference on, pages 162–171. IEEE, 1994.

[22] iOmniscient. Fall and Man Down Detection. http://iomniscient.com/index.php?
option=com_content&view=article&id=155&Itemid=53.

[23] K. Jeffay. Scheduling sporadic tasks with shared resources in hard-real-time
systems. In Real-Time Systems Symposium, 1992, pages 89–99. IEEE, 1992.

[24] I. Kalkov, D. Franke, J. F. Schommer, and S. Kowalewski. A Real-Time Extension
to The Android Platform. In Proceedings of the 10th International Workshop on
Java Technologies for Real-time and Embedded Systems, JTRES ’12, pages 105–114,
New York, NY, USA, 2012. ACM.

[25] I. Kalkov, A. Gurghian, and S. Kowalewski. Predictable Broadcasting of Parallel
Intents in Real-Time Android. In Proceedings of the 12th International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES ’14, pages 57:57–
57:66, New York, NY, USA, 2014. ACM.

[26] H. Kang, D. Kim, J. Kang, and K. Kim. Real-time motion control on android
platform. The Journal of Supercomputing, 72(1):196–213, 2016.

[27] L. Kleinrock. Queueing systems, volume 2: Computer applications, volume 66.
wiley New York, 1976.

http://embedded-computing.com/articles/android-rtos-duo-todays-medical-devices/
http://embedded-computing.com/articles/android-rtos-duo-todays-medical-devices/
http://goo.gl/EJuh1i
http://www.socsci.uci.edu/~jkrichma/ABR/abr_background.html
http://www.socsci.uci.edu/~jkrichma/ABR/abr_background.html
http://float.berkeley.edu/
http://www.robots-and-androids.com/
http://www.robots-and-androids.com/
http://www.overdriverobotics.com/
http://goo.gl/G5UXq
http://www.cse.msu.edu/About/Notable.php?Nid=423
http://www.summitdata.com/blog/?p=68
http://www.summitdata.com/blog/?p=68
http://goo.gl/d2JF3
http://iomniscient.com/index.php?option=com_content&view=article&id=155&Itemid=53
http://iomniscient.com/index.php?option=com_content&view=article&id=155&Itemid=53

DECPS’17, October 19, 2017, Seoul, South Korea Yin Yan and Lukasz Ziarek

[28] L. Klennrock. Queueing systems volume 1: theory. New York, 1975.
[29] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a

hard-real-time environment. Journal of the ACM (JACM), 20(1):46–61, 1973.
[30] C. Maia, L. Nogueira, and L. M. Pinho. Evaluating Android OS for Embedded

Real-Time Systems. In Proceedings of the 6th International Workshop on Oper-
ating Systems Platforms for Embedded Real-Time Applications, Brussels, Belgium,
OSPERT ’10, pages 63–70, 2010.

[31] W. Mauerer, G. Hillier, J. Sawallisch, S. Hönick, and S. Oberthür. Real-time
Android: Deterministic Ease of Use. In Proceedings of Embedded Linux Conference
Europe, ELCE, volume 12, 2012.

[32] H.-S. Oh, B.-J. Kim, H.-K. Choi, and S.-M. Moon. Evaluation of Android Dalvik
Virtual Machine. In Proceedings of the 10th International Workshop on Java
Technologies for Real-time and Embedded Systems, JTRES ’12, pages 115–124, New
York, NY, USA, 2012. ACM.

[33] E. Peguero, M. Labrador, and B. Cook. Assessing jitter in sensor time series
from android mobile devices. In 2016 IEEE International Conference on Smart
Computing (SMARTCOMP), pages 1–8, May 2016.

[34] L. Perneel, H. Fayyad-Kazan, and M. Timmerman. Can Android Be Used for
Real-Time Purposes? In Computer Systems and Industrial Informatics (ICCSII),
2012 International Conference on, pages 1–6. IEEE, 2012.

[35] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek. High-Level Programming of
Embedded Hard Real-Time Devices. In Proceedings of the 5th European conference
on Computer systems, EuroSys ’10, pages 69–82, New York, NY, USA, 2010. ACM.

[36] J. Qiu, D. Chu, X. Meng, and T. Moscibroda. On the feasibility of real-time phone-
to-phone 3d localization. In Proceedings of the 9th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’11, pages 190–203, New York, NY, USA, 2011.
ACM.

[37] G. J. Rajguru. Reliable Real-Time Applications on Android OS. International
Journal of Management, IT and Engineering, 4(6):192, 2014.

[38] A. P. Ruiz, M. A. Rivas, and M. G. Harbour. Cpu isolation on the android os for
running real-time applications. In Proceedings of the 13th International Workshop
on Java Technologies for Real-time and Embedded Systems, JTRES ’15, pages 6:1–6:7,

New York, NY, USA, 2015. ACM.
[39] F. Singhoff, J. Legrand, L. Nana, and L. Marcé. Cheddar: a flexible real time

scheduling framework. In ACM SIGAda Ada Letters, volume 24, pages 1–8. ACM,
2004.

[40] B. Sprunt. Aperiodic task scheduling for real-time systems. PhD thesis, PhD thesis,
1990.

[41] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task scheduling for hard-real-time
systems. Real-Time Systems, 1(1):27–60, Jun 1989.

[42] M. Spuri and J. A. Stankovic. How to integrate precedence constraints and shared
resources in real-time scheduling. IEEE Transactions on Computers, 43(12):1407–
1412, 1994.

[43] PhoneSat. http://www.nasa.gov/directorates/spacetech/small_spacecraft/
phonesat.html.

[44] Y. Yan, C. Chen, K. Dantu, S. Y. Ko, and L. Ziarek. Using a multi-tasking vm for
mobile applications. In Proceedings of the 17th International Workshop on Mobile
Computing Systems and Applications, pages 93–98. ACM, 2016.

[45] Y. Yan, S. Cosgrove, V. Anand, A. Kulkarni, S. H. Konduri, S. Y. Ko, and L. Ziarek.
Rtdroid: A design for real-time android. IEEE Trans. Mob. Comput., 15(10):2564–
2584, 2016.

[46] Y. Yan, S. Cosgrove, E. Blantont, S. Y. Ko, and L. Ziarek. Real-time sensing on
android. In Proceedings of the 12th International Workshop on Java Technologies
for Real-time and Embedded Systems, page 67. ACM, 2014.

[47] Y. Yan, K. Dantu, S. Ko, J. Vitek, and L. Ziarek. Making Android Run on Time.
In Real-Time and Embedded Technology and Application Symposium, RTAS ’17,
Washington, DC, USA, April 2017. IEEE Computer Society.

[48] Y. Yan, S. H. Konduri, A. Kulkarni, V. Anand, S. Ko, and L. Ziarek. Real-Time
Android with RTDroid. In The 12th International Conference on Mobile Systems,
Applications, and Services, MOBISYS ’14, New York, NY, USA, 2014. ACM.

[49] L. Ziarek and E. Blanton. The fiji multivm architecture. In Proceedings of the 13th
International Workshop on Java Technologies for Real-time and Embedded Systems,
JTRES ’15, pages 9:1–9:10, New York, NY, USA, 2015. ACM.

http://www.nasa.gov/directorates/spacetech/small_spacecraft/phonesat.html
http://www.nasa.gov/directorates/spacetech/small_spacecraft/phonesat.html

	Abstract
	1 Introduction
	2 Background
	2.1 Real-Time Components of RTDroid
	2.2 Task Model for RTDroid's Application Validation

	3 Application Validation and Bootstrap
	3.1 Integration between RTDroid Manifest and Cheddar
	3.2 Application Bootstrap

	4 Case Study: Cochlear Implant Application on RTDroid
	5 Related Work
	6 Conclusion and Future Work
	References

